
Plugeth
Release Austin Roberts

Philip Morlier, Austin Roberts

Oct 18, 2021

OVERVIEW

1 From Here: 3

i

ii

Plugeth, Release Austin Roberts

PluGeth is a fork of the Go Ethereum Client, Geth, that implements a plugin architecture allowing developers to extend
Geth’s capabilities in a number of different ways using plugins rather than having to create additional new forks.

OVERVIEW 1

https://geth.ethereum.org/

Plugeth, Release Austin Roberts

2 OVERVIEW

CHAPTER

ONE

FROM HERE:

• Ready for an overview of the project and some context? Project Design

• If your goal is to run existing plugns without sourcecode: Install

• If your goal is to build and deploy existing plugins or make custom plugins: Build and Deploy

• If your goal is to build cutsom plugins: Building a Custom Plugin

Warning: Right now PluGeth is in early development. We are still settling on some of the plugin APIs, and are
not yet making official releases. From an operational perspective, PluGeth should be as stable as upstream Geth
less whatever instability is added by plugins you might run. But if you plan to run PluGeth today, be aware that
furture updates will likely break your plugins.

1.1 Table of Contents

1.1.1 Project Design

Design Goals

Upstream Geth exists primarily to serve as a client for the Ethereum mainnet, though it also supports a number of
popular testnets. Supporting the Ethereum mainnet is a big enough challenge in its own right that the Geth team
generally avoids changes to support other networks, or to provide features only a small handful of users would be
interested in.

The result is that many projects have forked Geth. Some implement their own consensus protocols or alter the behavior
of the EVM to support other networks. Others are designed to extract information from the Ethereum mainnet in ways
the standard Geth client does not support.

Creating numerous different forks to fill a variety of different needs comes with a number of drawbacks. Forks tend to
drift apart from each other. Many networks that forked from Geth long ago have stopped merging updates; this makes
some sense, given that those networks have moved in different directions than Geth and merging upstream changes
while properly maintaining consensus rules of an existing network could prove quite challenging. But not merging
changes from upstream can mean that security updates are easily missed, especially when the upstream team obscures
security updates as optimizations as a matter of process.

PluGeth aims to provide a single Geth fork that developers can choose to extend rather than forking the Geth project.
Out of the box, PluGeth behaves exactly like upstream Geth, but by installing plugins written in Golang, developers
can extend its functionality in a wide variety of ways.

3

https://blog.openrelay.xyz/vulnerability-lifecycle-framework-geth/
https://blog.openrelay.xyz/vulnerability-lifecycle-framework-geth/

Plugeth, Release Austin Roberts

Three Repositories

PluGeth is an application built in three repositories:

PluGeth

The largest of the three Repositories, PluGeth is a fork of Geth which has been modified to enable a plugin architecture.
The Plugin loader, wrappers, and hooks all reside in this repository.

PluGeth-Utils

Utils are small packages used to develop PluGeth plugins without Geth dependencies. For a more detailed analysis of
the reasons see PluGeth-utils Subpackages. Imports from Utils happen automatically and so most users need not clone
a local version.

PluGeth-Plugins

The packages from which plugins are buile are stored here. This repository contains premade plugins as well as
providing a location for storing new custom plugins.

Version Control

In order to ensure that the the project can compile and is up to date see: Version; to be familiar with dependencies and
requirements.

1.1.2 Basic Types of Plugins

While PluGeth has been designed to be versatile and customizable, when learning the project it can be helpful to think
of plugins as being of four different archetypes.

• RPC Methods

• Subcommand

• Tracers

• Subscriptions

RPC Methods

These plugins provide new json rpc methods to access several objects containing real time and historic data.

4 Chapter 1. From Here:

Plugeth, Release Austin Roberts

Subcommand

A subcommand redifines the total behavior of Geth and could stand on its own. In contrast with the other plugin
types which, in general, are meant to capture and manipulate information, a subcommand is meant to change to overall
behavior of Geth. It may do this in order to capture information but the primary fuctionality is a modulation of geth
behaviour.

Tracers

Tracers rely on historic data recompiled after execution to give insight into a transaction.

Subscriptions

Subscriptions provide real time notification of data from the EVM as it processes transactions.

Note: Plugins are not limited to a singular functionality and can be customized to operate as hybrids of the above. See
blockupdates as an example.

1.1.3 Install

PluGeth provides a pre-built PluGeth-Geth node as well as pre-built plugins available for download.

First download the latest PluGeth binary release.

Our curated list of plugin builds can be found here

After downloading, move the .so files into the ~/.ethereum/plugins directory.

1.1.4 Build and Deploy

• Setting up the environment

• Build a plugin

If you are ready to start building your own plugins go ahead and start here.

Setting up the environment

Note: Plugeth is built on a fork of Geth and as such requires familiarity with Go and a funtional environment in which
to build Go projects. Thankfully for everyone Go provides a compact and useful tutorial as well as a space for practice.

PluGeth is an application built in three seperate repositories.

• PluGeth

• PluGeth-Utils

• PluGeth-Plugins

1.1. Table of Contents 5

https://github.com/openrelayxyz/plugeth-plugins/tree/master/packages/blockupdates
https://github.com/openrelayxyz/plugeth/releases
https://github.com/openrelayxyz/plugeth-plugins/releases
https://geth.ethereum.org/
https://golang.org/doc/
https://golang.org/doc/code
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://github.com/openrelayxyz/plugeth
https://github.com/openrelayxyz/plugeth-utils
https://github.com/openrelayxyz/plugeth-plugins

Plugeth, Release Austin Roberts

For our purposed here you will only need to clone Plugeth and Plugeth-Plugins. Once you have them cloned you are
ready to begin. First we need to build geth though the PluGeth project. Navigate to plugeth/cmd/geth and run:

$ go get

This will download all dependencies needed for the project. This process will take a moment or two the first time
through. Next run:

$ go build

Once this is complete you should see a .ethereum folder in your home directory.

At this point you are ready to start downloading local ethereum nodes. In order to do so, from plugeth/cmd/geth
run:

$./geth

Note: ./geth is the primary command to build a Mainnet node. Building a mainnet node requires at least 8 GB
RAM, 2 CPUs, and 350 GB of SSD disks. However, dozens of available flags will change the behavior of whichever
network you choose to connect to. --help is your friend.

Build a plugin

For the sake of this tutorial we will be building the Hello plugin. Navigate to plugethPlugins/packages/hello.
Inside you will see a main.go file. From this location run:

$ go build -buildmode=plugin

This will compile the plugin and produce a hello.so file. Move hello.so into ~/.ethereum/plugins . In order to
use this plugin geth will need to be started with a http.api=mymamespace flag. Additionally you will need to include
a --http flag in order to access the standard json rpc methods.

Once geth has started you should see that the first INFO log reads: initialized hello . A new json rpc method,
called hello, has been been appended to the list of available json rpc methods. In order to access this method you will
need to curl into the network with this command:

$ curl 127.0.0.1:8545 -H "Content-Type: application/json" --data '{"jsonrpc":"2.0",
→˓"method":"mynamespace_hello","params":[],"id":0}'

You should see that the network has responded with:

``{"jsonrpc":"2.0","id":0,"result":"Hello world"}``

Congradulations. You have just built and run your first Plugeth plugin. From here you can follow the steps above to
build any of the plugins you choose.

Note: Each plugin will vary in terms of the requirements to deploy. Refer to the documentation of the plugin itself in
order to assure that you know how to use it.

6 Chapter 1. From Here:

Plugeth, Release Austin Roberts

1.1.5 Building a Custom Plugin

RPC Methods

GetAPIs

For RPC Methods a Get APIs method is required in the body of the plugin in order to make the plugin available. The
bulk of the implementation will be in the MyService struct. MyService should be a struct which includes two public
functions.

type MyService struct {
backend core.Backend
stack core.Node

}

func GetAPIs(stack core.Node, backend core.Backend) []core.API {
return []core.API{
{

Namespace: "plugeth",
Version: "1.0",
Service: &MyService{backend, stack},
Public: true,

},
}
}

RPC Method

(accurate heading?)

For RPC calls, a function should have a context.Context object as the first argument, followed by an arbitrary
number of JSON marshallable arguments, and return either a single JSON marshal object, or a JSON marshallable
object and an error. The RPC framework will take care of decoding inputs to this function and encoding outputs, and
if the error is non-nil it will serve an error response.

A simple implimentation would look like so:

eventual link to documentation for hello or some other rpc plugin

func (h *MyService) HelloWorld(ctx context.Context) string {
return "Hello World"

}

Note: For plugins such as RPC Methods whcih impliment a GetAPIs function, an Initialize Node function may not
be necesary as the core.Node and core.Backend will be made available with GetAPIs.

1.1. Table of Contents 7

Plugeth, Release Austin Roberts

Access

As with pre-built plugins, a``.so`` will need to be built from``main.go`` and moved into ~/.ethereum/plugins. Geth
will need to be started with with a http.api=mymamespace flag. Additionally you will need to include a --http flag
in order to access the standard json rpc methods.

The plugin can now be accessed with an rpc call to mynamespace_helloWorld.

Subscription

In addition to the initial template containing an intialize function, plugins providing Subscriptions will require two
additional elements.

GetAPIs

A GetAPIs method is required in the body of the plugin in order to make the plugin available. The bulk of the imple-
mentation will be in the MyService struct. MyService should be a struct which includes two public functions.

type MyService struct {
backend core.Backend
stack core.Node

}

func GetAPIs(stack core.Node, backend core.Backend) []core.API {
return []core.API{
{

Namespace: "plugeth",
Version: "1.0",
Service: &MyService{backend, stack},
Public: true,

},
}
}

Subscription Function

For subscriptions (supported on IPC and websockets), a function should take MyService as a reciever and a con-
text.Context object as an argument and return a channel and an error. The following is a subscription function that
impliments a timer.

func (*myservice) Timer(ctx context.Context) (<-chan int64, error) {
ticker := time.NewTicker(time.Second)
ch := make(chan int64)
go func() {

defer ticker.Stop()
for {

select {
case <-ctx.Done():

close(ch)
return

case t := <-ticker.C:
(continues on next page)

8 Chapter 1. From Here:

Plugeth, Release Austin Roberts

(continued from previous page)

ch <- t.UnixNano()
}

}
}()
return ch, nil

}

Warning: Notice in the example above, the ctx.Done() or Context.Done() method closes the channel. If this is
not present the go routine will run for the life of the process.

Access

Note: Plugins providing subscriptions can be accessed via IPC and websockets. In the below example we will be
using wscat to connect a websocket to a local Geth node.

As with pre-built plugins, a .so will need to be built from main.go and moved into ~/.ethereum/plugins. Geth
will need to be started with with --ws --ws.api=mynamespace``flags. Additionally you will need to
include a ``--http flag in order to access the standard json rpc methods.

After starting Geth, from a seperate terminal run:

wscat -c ws://127.0.0.1:8546

Note: Websockets are available via port 8546

Once the connection has been established from the websocket cursor enter the following argument:

{"jsonrpc":"2.0","method":"mynamespace_hello","params":[],"id":0}

You should see that the network has responded with:

``{"jsonrpc":"2.0","id":0,"result":"Hello world"}``

Tracer

In addition to the initial template containing an intialize function, plugins providing Tracers will require three addi-
tional elements.

Warning: Caution: Modifying of the values passed into tracer functions can alter the results of the EVM execution
in unpredictable ways. Additionally, some objects may be reused across calls, so data you wish to capture should
be copied rather than retained be reference.

1.1. Table of Contents 9

https://www.npmjs.com/package/wscat

Plugeth, Release Austin Roberts

MyService Struct

First an empty MyService Struct.

type MyService struct {
}

Map

Next, a map of tracers to functions returning a core.TracerResult which will be implimented like so:

var Tracers = map[string]func(core.StateDB) core.TracerResult{
"myTracer": func(core.StateDB) core.TracerResult {

return &MyBasicTracerService{}
},

}

TracerResult Functions

Finally a series of functions which points to the MyService struct and coresponds to the interface which geth anticipates.

func (b *MyBasicTracerService) CaptureStart(from core.Address, to core.Address, create␣
→˓bool, input []byte, gas uint64, value *big.Int) {
}
func (b *MyBasicTracerService) CaptureState(pc uint64, op core.OpCode, gas, cost uint64,␣
→˓scope core.ScopeContext, rData []byte, depth int, err error) {
}
func (b *MyBasicTracerService) CaptureFault(pc uint64, op core.OpCode, gas, cost uint64,␣
→˓scope core.ScopeContext, depth int, err error) {
}
func (b *MyBasicTracerService) CaptureEnd(output []byte, gasUsed uint64, t time.Duration,
→˓ err error) {
}
func (b *MyBasicTracerService) CaptureEnter(typ core.OpCode, from core.Address, to core.
→˓Address, input []byte, gas uint64, value *big.Int) {
}
func (b *MyBasicTracerService) CaptureExit(output []byte, gasUsed uint64, err error) {
}
func (b *MyBasicTracerService) Result() (interface{}, error) { return "hello world", nil␣
→˓}

10 Chapter 1. From Here:

Plugeth, Release Austin Roberts

Access

As with pre-built plugins, a .so will need to be built from main.go and moved into ~/.ethereum/plugins. Geth
will need to be started with with a --http.api+debug flag.

From a terminal pass the following argument to the api:

curl 127.0.0.1:8545 -H "Content-Type: application/json" --data '{"jsonrpc":"2.0","method
→˓":"debug_traceCall","params":[{"to":"0x32Be343B94f860124dC4fEe278FDCBD38C102D88"},
→˓"latest",{"tracer":"myTracer"}],"id":0}'

Note: The address used above is a test adress and will need to be replaced by whatever address you wish to access.
Also traceCall is one of several methods available for use.

If using the template above, the call should return:

{"jsonrpc":"2.0","id":0,"result":"hello world"}

Before setting out to build a plugin it will be helpful to be familiar with the Basic Types of Plugins. deifferent plugins
will require different implimentation.

Basic Implementation

In general, no matter which type of plugin you intend to build, all will share some common aspects.

Package

Any plugin will need its own package located in the Plugeth-Plugins packages directory. The package will need to
include a main.go from which the .so file will be built. The package and main file should share the same name and the
name should be a word that describes the basic functionality of the plugin.

Initialize

Most plugins will need to be initialized with an Initialize function. The initialize function will need to be passed at
least three arguments: a cli.Context, core.PluginLoader, and a core.Logger.

And so, all plugins could have an intial template that looks something like this:

package main

import (
"github.com/openrelayxyz/plugeth-utils/core"
"gopkg.in/urfave/cli.v1"

)

var log core.Logger

func Initialize(ctx *cli.Context, loader core.PluginLoader, logger core.Logger) {
log = logger
log.Info("loaded New Custom Plugin")

}

1.1. Table of Contents 11

Plugeth, Release Austin Roberts

InitializeNode

Many plugins will make use of the InitializeNode function. Implimentation will look like so:

func InitializeNode(stack core.Node, b core.Backend) {
backend = b
log.Info("Initialized node and backend")

}

This is called as soon as the Geth node is initialized. The core.Node object represents the running node with p2p and
RPC capabilities, while the Backend gives you access to blocks and other data you may need to access.

Specialization

From this point implimentation becomes more specialized to the particular plugin type. Continue from here for specific
instructions for the following plugins:

• RPC Methods

• Subscription

• Tracer

1.1.6 System Requirements

System requirements will vary depending on which network you are connecting to. On the Ethereum mainnet, you
should have at least 8 GB RAM, 2 CPUs, and 350 GB of SSD disks.

PluGeth relies on Golang’s Plugin implementation, which is only supported on Linux, FreeBSD, and macOS. Windows
support is unlikely to be added in the foreseeable future.

1.1.7 Version

PluGeth is separated into three packages in order to minimize dependency conflicts. Golang plugins cannot include
different versions of the same packages as the program loading the plugin. If plugins had to import packages from
PluGeth itself, a plugin build could only be loaded by that same version of PluGeth. By separating out the PluGeth-utils
package, both PluGeth and the plugins must rely on the same version of PluGeth-utils, but plugins can be compatible
with any version of PluGeth compiled with the same version of PluGeth-utils.

PluGeth builds will follow the naming convention:

geth-$PLUGETH_UTILS_VERSION-$GETH_VERSION-$RELEASE

For example:

geth-0.1.0-1.10.8-0

Tells us that:

• PluGeth-utils version is 0.1.0

• Geth version is 1.10.8

• This is the first release with that combination of dependencies.

Plugin builds will follow the naming convention:

12 Chapter 1. From Here:

Plugeth, Release Austin Roberts

$PLUGIN_NAME-$PLUGETH_UTILS_VERSION-$PLUGIN_VERSION

For example:

blockupdates-0.1.0-1.0.2

Tells us that:

• The plugin is “blockupdates”

• The PluGeth-utils version is 0.1.0

• The plugin version is 1.0.2

When a Geth update comes out, you can expect a release of geth-0.1.0-1.10.9-0, which will be compatible with the
same set of plugins.

When PluGeth upgrades are necessary, plugins will need to be recompiled. Whenever possible, we will try to avoid
forcing plugins to be recompiled for an immediate Geth upgrade. For example, if we have geth-0.1.0-1.10.8, and
upgrade PluGeth-utils, we will have a geth-0.1.1-1.10.8, followed by a geth-0.1.1-1.10.9. This will give users time to
upgrade plugins from PluGeth-utils 0.1.0 to 0.1.1 while staying on Geth 1.10.8, and when it is time to upgrade to Geth
1.10.9 they can continue using the plugins they were using with geth 1.10.8. Depending on upgrades to Geth, it may
not always be possible to maintain compatibility with existing PluGeth versions, which will be noted in release notes.

1.1.8 API

Anatomy of a Plugin

Plugins for Plugeth use Golang’s Native Plugin System. Plugin modules must export variables using specific names
and types. These will be processed by the plugin loader, and invoked at certain points during Geth’s operations.

Flags

• Name: Flags

• Type: flag.FlagSet

• Behavior: This FlagSet will be parsed and your plugin will be able to access the resulting flags. Flags will be
passed to Geth from the command line and are intended to of the plugin. Note that if any flags are provided,
certain checks are disabled within Geth to avoid failing due to unexpected flags.

Subcommands

• Name: Subcommands

• Type: map[string]func(ctx *cli.Context, args []string) error

• Behavior: If Geth is invoked with ./geth YOUR_COMMAND, the plugin loader will look for YOUR_COMMAND
within this map, and invoke the corresponding function. This can be useful for certain behaviors like manipulating
Geth’s database without having to build a separate binary.

1.1. Table of Contents 13

https://pkg.go.dev/plugin
https://pkg.go.dev/flag#FlagSet
https://pkg.go.dev/github.com/urfave/cli#Context

Plugeth, Release Austin Roberts

Initialize

• Name: Initialize

• Type: func(*cli.Context, core.PluginLoader, core.logs)

• Behavior: Called as soon as the plugin is loaded, with the cli context and a reference to the plugin loader. This
is your plugin’s opportunity to initialize required variables as needed. Note that using the context object you can
check arguments, and optionally can manipulate arguments if needed for your plugin.

InitializeNode

• Name: InitializeNode

• Type: func(core.Node, core.Backend)

• Behavior: This is called as soon as the Geth node is initialized. The core.Node object represents the running
node with p2p and RPC capabilities, while the Backend gives you access to a wide array of data you may need
to access.

Note: If a particular plugin requires access to the node.Node object it can be obtained using the restricted package
located in PluGeth-Utils.

GetAPIs

• Name: GetAPIs

• Type: func(core.Node, core.Backend) []rpc.API

• Behavior: This allows you to register new RPC methods to run within Geth.

The GetAPIs function itself will generally be fairly brief, and will looks something like this:

``func GetAPIs(stack *node.Node, backend core.Backend) []core.API {
return []rpc.API{
{
Namespace: "mynamespace",
Version: "1.0",
Service: &MyService{backend},
Public: true,

},
}

}``

The bulk of the implementation will be in the MyService struct. MyService should be a struct with public functions.
These functions can have two different types of signatures:

• RPC Calls: For straight RPC calls, a function should have a context.Context object as the first argument,
followed by an arbitrary number of JSON marshallable arguments, and return either a single JSON marshal
object, or a JSON marshallable object and an error. The RPC framework will take care of decoding inputs to this
function and encoding outputs, and if the error is non-nil it will serve an error response.

• Subscriptions: For subscriptions (supported on IPC and websockets), a function should have a context.
Context object as the first argument followed by an arbitrary number of JSON marshallable arguments,
and should return an *rpc.Subscription object. The subscription object can be created with rpcSub

14 Chapter 1. From Here:

https://github.com/openrelayxyz/plugeth-utils

Plugeth, Release Austin Roberts

:= notifier.CreateSubscription(), and JSON marshallable data can be sent to the subscriber with
notifier.Notify(rpcSub.ID, b).

A very simple MyService might look like:

``type MyService struct{}

func (h MyService) HelloWorld(ctx context.Context) string {
return "Hello World"

}``

And the client could access this with an rpc call to mynamespace_helloworld

Injected APIs

In addition to hooks that get invoked by Geth, several objects are injected that give you access to additional information.

Backend Object

The core.Backend object is injected by the InitializeNode() and GetAPI() functions. It offers the following
functions:

Downloader

Downloader() Downloader

Returns a Downloader objects, which can provide Syncing status

SuggestGasTipCap

SuggestGasTipCap(ctx context.Context) (*big.Int, error)

Suggests a Gas tip for the current block.

ExtRPCEnabled

ExtRPCEnabled() bool

Returns whether RPC external RPC calls are enabled.

RPCGasCap

RPCGasCap() uint64

Returns the maximum Gas available to RPC Calls.

1.1. Table of Contents 15

Plugeth, Release Austin Roberts

RPCTxFeeCap

RPCTxFeeCap() float64

Returns the maximum transaction fee for a transaction submitted via RPC.

UnprotectedAllowed

UnprotectedAllowed() bool

Returns whether or not unprotected transactions can be transmitted through this node via RPC.

SetHead

SetHead(number uint64)

Resets the head to the specified block number.

HeaderByNumber

HeaderByNumber(ctx context.Context, number int64) ([]byte, error)

Returns an RLP encoded block header for the specified block number.

The RLP encoded response can be decoded into a plugeth-utils/restricted/types.Header object.

HeaderByHash

HeaderByHash(ctx context.Context, hash Hash) ([]byte, error)

Returns an RLP encoded block header for the specified block hash.

The RLP encoded response can be decoded into a plugeth-utils/restricted/types.Header object.

CurrentHeader

CurrentHeader() []byte

Returns an RLP encoded block header for the current block.

The RLP encoded response can be decoded into a plugeth-utils/restricted/types.Header object.

CurrentBlock

CurrentBlock() []byte

Returns an RLP encoded full block for the current block.

The RLP encoded response can be decoded into a plugeth-utils/restricted/types.Block object.

16 Chapter 1. From Here:

Plugeth, Release Austin Roberts

BlockByNumber

BlockByNumber(ctx context.Context, number int64) ([]byte, error)

Returns an RLP encoded full block for the specified block number.

The RLP encoded response can be decoded into a plugeth-utils/restricted/types.Block object.

BlockByHash

BlockByHash(ctx context.Context, hash Hash) ([]byte, error)

Returns an RLP encoded full block for the specified block hash.

The RLP encoded response can be decoded into a plugeth-utils/restricted/types.Block object.

GetReceipts

GetReceipts(ctx context.Context, hash Hash) ([]byte, error)

Returns an JSON encoded list of receipts for the specified block hash.

The JSON encoded response can be decoded into a plugeth-utils/restricted/types.Receipts object.

GetTd

GetTd(ctx context.Context, hash Hash) *big.Int

Returns the total difficulty for the specified block hash.

SubscribeChainEvent

SubscribeChainEvent(ch chan<- ChainEvent) Subscription

Subscribes the provided channel to new chain events.

SubscribeChainHeadEvent

SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) Subscription

Subscribes the provided channel to new chain head events.

SubscribeChainSideEvent

SubscribeChainSideEvent(ch chan<- ChainSideEvent) Subscription

Subscribes the provided channel to new chain side events.

1.1. Table of Contents 17

Plugeth, Release Austin Roberts

SendTx

SendTx(ctx context.Context, signedTx []byte) error

Sends an RLP encoded, signed transaction to the network.

GetTransaction

GetTransaction(ctx context.Context, txHash Hash) ([]byte, Hash, uint64, uint64, error)

Returns an RLP encoded transaction at the specified hash, along with the hash and number of the included block, and
the transaction’s position within that block.

GetPoolTransactions

GetPoolTransactions() ([][]byte, error)

Returns a list of RLP encoded transactions found in the mempool

GetPoolTransaction

GetPoolTransaction(txHash Hash) []byte

Returns the RLP encoded transaction from the mempool at the specified hash.

GetPoolNonce

GetPoolNonce(ctx context.Context, addr Address) (uint64, error)

Returns the nonce of the last transaction for a given address, including transactions found in the mempool.

Stats

Stats() (pending int, queued int)

Returns the number of pending and queued transactions in the mempool.

TxPoolContent

TxPoolContent() (map[Address][][]byte, map[Address][][]byte)

Returns a map of addresses to the list of RLP encoded transactions pending in the mempool, and queued in the mempool.

18 Chapter 1. From Here:

Plugeth, Release Austin Roberts

SubscribeNewTxsEvent

SubscribeNewTxsEvent(chan<- NewTxsEvent) Subscription

Subscribe to a feed of new transactions added to the mempool.

GetLogs

GetLogs(ctx context.Context, blockHash Hash) ([][]byte, error)

Returns a list of RLP encoded logs found in the specified block.

SubscribeLogsEvent

SubscribeLogsEvent(ch chan<- [][]byte) Subscription

Subscribe to logs included in a confirmed block.

SubscribePendingLogsEvent

SubscribePendingLogsEvent(ch chan<- [][]byte) Subscription

Subscribe to logs from pending transactions.

SubscribeRemovedLogsEvent

SubscribeRemovedLogsEvent(ch chan<- []byte) Subscription

Subscribe to logs removed from the canonical chain in reorged blocks.

Node Object

The core.Node object is injected by the InitializeNode() and GetAPI() functions. It offers the following func-
tions:

Server

Server() Server

The Server object provides access to server.PeerCount(), the number of peers connected to the node.

1.1. Table of Contents 19

Plugeth, Release Austin Roberts

DataDir

DataDir() string

Returns the Ethereuem datadir.

InstanceDir

InstanceDir() string

Returns the instancedir used by the protocol stack.

IPCEndpoint

IPCEndpoint() string

The path of the IPC Endpoint for this node.

HTTPEndpoint

HTTPEndpoint() string

The url of the HTTP Endpoint for this node.

WSEndpoint

WSEndpoint() string

The url of the websockets Endpoint for this node.

ResolvePath

ResolvePath(x string) string

Resolves a path within the DataDir.

Logger

The Logger object is injected by the Initialize() function. It implements logging based on the interfaces of Log15.

1.1.9 Plugin Loader

The Plugin Loader is provided to each Plugin through the Initialize()`` function. It provides plugins with:

20 Chapter 1. From Here:

https://github.com/inconshreveable/log15

Plugeth, Release Austin Roberts

Lookup

Lookup(name string, validate func(interface{}) bool) []interface{}

Returns a list of values from plugins identified by name, which match the provided validate predicate. For example:

pl.Lookup("Version", func(item interface{}) bool {
_, ok := item.(int)
return ok

})

Would return a list of int objects named Version in any loaded plugins. This can enable Plugins to interact with each
other, accessing values and functions implemented in other plugins.

GetFeed

GetFeed() Feed

Returns a new feed that the plugin can used for publish/subscribe models.

For example:

feed := pl.GetFeed()
go func() {
ch := make(chan string)
sub := feed.Subscribe(ch)
for {
select {
case item := <-ch:
// Do something with item

case err := <sub.Err():
log.Error("An error has occurred", "err", err)
sub.Unsubscribe()
close(ch)
return

}
}

}()

feed.Send("hello")
feed.Send("world")

Note that you can send any type through a feed, but the subscribed channel and sent objects must be of matching types.

1.1.10 Selected Plugin Hooks

Plugin Hooks

Plugeth provides several hooks from which the plugin can capture data from Geth. Additionally in the case of sub-
commands the provided hooks are designed to change the behavior of Geth.

Hooks are called from functions within the plugin. For example, if we wanted to bring in data from the StateUpdate
hook. We would impliment it like so: (from blockupdates)

1.1. Table of Contents 21

https://github.com/openrelayxyz/plugeth-plugins/tree/master/packages/blockupdates

Plugeth, Release Austin Roberts

func StateUpdate(blockRoot core.Hash, parentRoot core.Hash, destructs map[core.
→˓Hash]struct{}, accounts map[core.Hash][]byte, storage map[core.Hash]map[core.
→˓Hash][]byte, codeUpdates map[core.Hash][]byte) {

su := &stateUpdate{
Destructs: destructs,
Accounts: accounts,
Storage: storage,
Code: codeUpdates,

}
cache.Add(blockRoot, su)
data, _ := rlp.EncodeToBytes(su)
backend.ChainDb().Put(append([]byte("su"), blockRoot.Bytes()...), data)

}

Many hooks can be deployed in an one plugin as is the case with the BlockUpdater plugin.

StateUpdate

Function Signature:func(root common.Hash, parentRoot common.Hash, destructs map[common.
Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.
Hash][]byte)

The state update plugin provides a snapshot of the state subsystem in the form of a a stateUpdate object. The stateUpdate
object contains all information transformed by a transaction but not the transaction itself.

Invoked for each new block, StateUpdate provides the changes to the blockchain state. root corresponds to the state root
of the new block. parentRoot corresponds to the state root of the parent block. destructs serves as a set of accounts that
self-destructed in this block. accounts maps the hash of each account address to the SlimRLP encoding of the account
data. storage maps the hash of each account to a map of that account’s stored data.

Warning: StateUpdate is only called if Geth is running with -snapshots=true. This is the default behavior for
Geth, but if you are explicitly running with --snapshot=false this function will not be invoked.

AppendAncient

Function Signature:func(number uint64, hash, header, body, receipts, td []byte)

Invoked when the freezer moves a block from LevelDB to the ancients database. number is the number of the block.
hash is the 32 byte hash of the block as a raw []byte. header, body, and receipts are the RLP encoded versions
of their respective block elements. td is the byte encoded total difficulty of the block.

GetRPCCalls

Function Signature:func(string, string, string)

Invoked when the RPC handler registers a method call. Returns the call id, method name, and any params that may
have been passed in.

Todo: missing a couple of hooks

22 Chapter 1. From Here:

Plugeth, Release Austin Roberts

PreProcessBlock

Function Signature:func(*types.Block)

Invoked before the transactions of a block are processed. Returns a block object.

PreProcessTransaction

Function Signature:func(*types.Transaction, *types.Block, int)

Invoked before each individual transaction of a block is processed. Returns a transaction, block, and index number.

BlockProcessingError

Function Signature:func(*types.Transaction, *types.Block, error)

Invoked if an error occurs while processing a transaction. This only applies to errors that would unvalidate the block
were this transaction is included not errors such as reverts or opcode errors. Returns a transaction, block, and error.

NewHead

Function Signature:func(*types.Block, common.Hash, []*types.Log)

Invoked when a new block becomes the canonical latest block. Returns a block, hash, and log.

Note: If severtal blocks are processed in a group (such as during a reorg) this may not be called for each block. You
should track the prior latest head if you need to process intermediate blocks.

NewSideBlock

Function Signature:func(*types.Block, common.Hash, []*types.Log)

Invoked when a block is side-chained. Returns a block, has, and logs.

Note: Blocks passed to this method are non-canonical blocks.

Reorg

Function Signature:func(common *types.Block, oldChain, newChain types.Blocks)

Invoked when a chain reorg occurs, that is; at least one block is removed and one block is added. (oldChain is a list of
removed blocks, newChain is a list of newliy added blocks, and common is the latest block that is an ancestor to both
oldChain and newChain.) Returns a block, a list of old blocks, and a list of new blocks.

1.1. Table of Contents 23

Plugeth, Release Austin Roberts

1.1.11 Hook Writing Guide

If you’re trying to interact with Geth in a way not already supported by PluGeth, we’re happy to accept pull requests
adding new hooks so long as they comply with certain standards. We strongly encourage you to contact us first. We
may have suggestions on how to do what you’re trying to do without adding new hooks, or easier ways to implement
hooks to get the information you need.

Warning: Plugin hooks must not require plugins to import any packages from github.com/ethereum/
go-ethereum. Doing so means that plugins must be recompiled for each version of Geth. Many types have been
re-implemented in github.com/openrelayxyz/plugeth-utils. If you need a type for your hook not already
provided by plugeth-utils, you may make a pull request to that project as well.

When extending the plugin API, a primary concern is leaving a minimal footprint in the core Geth codebase to avoid
future merge conflicts. To achieve this, when we want to add a hook within some existing Geth code, we create a
plugin_hooks.go in the same package. For example, in the core/rawdb package we have:

// This file is part of the package we are adding hooks to
package rawdb

// Import whatever is necessary
import (
"github.com/ethereum/go-ethereum/plugins"
"github.com/ethereum/go-ethereum/log"

)

// PluginAppendAncient is the public plugin hook function, available for testing
func PluginAppendAncient(pl *plugins.PluginLoader, number uint64, hash, header, body,␣
→˓receipts, td []byte) {
fnList := pl.Lookup("AppendAncient", func(item interface{}) bool {
_, ok := item.(func(number uint64, hash, header, body, receipts, td []byte))
return ok

})
for _, fni := range fnList {
if fn, ok := fni.(func(number uint64, hash, header, body, receipts, td []byte)); ok {
fn(number, hash, header, body, receipts, td)

}
}

}

// pluginAppendAncient is the private plugin hook function
func pluginAppendAncient(number uint64, hash, header, body, receipts, td []byte) {
if plugins.DefaultPluginLoader == nil {

log.Warn("Attempting AppendAncient, but default PluginLoader has not been␣
→˓initialized")
return

}
PluginAppendAncient(plugins.DefaultPluginLoader, number, hash, header, body, receipts,␣

→˓td)
}

24 Chapter 1. From Here:

Plugeth, Release Austin Roberts

The Public Plugin Hook Function

The public plugin hook function should follow the naming convention Plugin$HookName. The first argument should
be a *plugins.PluginLoader, followed by any arguments required by the functions to be provided by nay plugins
implementing this hook.

The plugin hook function should use PluginLoader.Lookup("$HookName", func(item interface{}) bool
to get a list of the plugin-provided functions to be invoked. The provided function should verify that the provided
function implements the expected interface. After the first time a given hook is looked up through the plugin loader,
the PluginLoader will cache references to those hooks.

Given the function list provided by the plugin loader, the public plugin hook function should iterate over the list, cast
the elements to the appropriate type, and call the function with the provided arguments.

Unless there is a clear justification to the contrary, the function should be called in the current goroutine. Plugins may
choose to spawn off a separate goroutine as appropriate, but for the sake of thread safety we should generally not assume
that plugins will be implemented in a threadsafe manner. If a plugin degrades the performance of Geth significantly,
that will generally be obvious, and plugin authors can take appropriate measures to improve performance. If a plugin
introduces thread safety issues, those can go unnoticed during testing.

The Private Plugin Hook Function

The private plugin hook function should bear the same name as the public plugin hook function, but with a lower
case first letter. The signature should match the public plugin hook function, except that the first argument ref-
erencing the PluginLoader should be removed. It should invoke the public plugin hook function on plugins.
DefaultPluginLoader. It should always verify that the DefaultPluginLoader is non-nil, log warning and return
if the DefaultPluginLoader has not been initialized.

In-Line Invocation

Within the Geth codebase, the private plugin hook function should be invoked with the appropriate arguments in a
single line, to minimize unexpected conflicts merging the upstream geth codebase into plugeth.

1.1.12 PluGeth-utils Subpackages

PluGeth-utils is separated into two main packages: core, and restricted.

The core package has been implemented by the Rivet team, and is licensed under the MIT license, allowing it to be
used in open source and closed source plugins alike. Nearly all plugins will need to import plugeth-utils/core in order
to

The restricted package copies code from the go-ethereum project, which means it must be licensed under the LGPL
license. If you import plugeth-utils/restricted, you must be sure that your plugin complies with requirements of linking
to LGPL code, which will usually require making your source code available to anyone you distribute the plugin to.

1.1. Table of Contents 25

Plugeth, Release Austin Roberts

1.1.13 Get in touch with us

We want to hear from you! The best way to reach the PluGeth team is through our Discord server. Drop in, say hello,
we are anxious to hear your ideas and help work through any problems you may be having.

Join our Discord

26 Chapter 1. From Here:

https://discord.gg/J3tQMWCVPn

	From Here:
	Table of Contents
	Project Design
	Design Goals
	Three Repositories
	PluGeth
	PluGeth-Utils
	PluGeth-Plugins
	Version Control

	Basic Types of Plugins
	RPC Methods
	Subcommand
	Tracers
	Subscriptions

	Install
	Build and Deploy
	Setting up the environment
	Build a plugin

	Building a Custom Plugin
	RPC Methods
	GetAPIs
	RPC Method
	Access

	Subscription
	GetAPIs
	Subscription Function
	Access

	Tracer
	MyService Struct
	Map
	TracerResult Functions
	Access

	Basic Implementation
	Package
	Initialize
	InitializeNode

	Specialization

	System Requirements
	Version
	API
	Anatomy of a Plugin
	Flags
	Subcommands
	Initialize
	InitializeNode
	GetAPIs

	Injected APIs
	Backend Object
	Downloader
	SuggestGasTipCap
	ExtRPCEnabled
	RPCGasCap
	RPCTxFeeCap
	UnprotectedAllowed
	SetHead
	HeaderByNumber
	HeaderByHash
	CurrentHeader
	CurrentBlock
	BlockByNumber
	BlockByHash
	GetReceipts
	GetTd
	SubscribeChainEvent
	SubscribeChainHeadEvent
	SubscribeChainSideEvent
	SendTx
	GetTransaction
	GetPoolTransactions
	GetPoolTransaction
	GetPoolNonce
	Stats
	TxPoolContent
	SubscribeNewTxsEvent
	GetLogs
	SubscribeLogsEvent
	SubscribePendingLogsEvent
	SubscribeRemovedLogsEvent

	Node Object
	Server
	DataDir
	InstanceDir
	IPCEndpoint
	HTTPEndpoint
	WSEndpoint
	ResolvePath

	Logger

	Plugin Loader
	Lookup
	GetFeed

	Selected Plugin Hooks
	Plugin Hooks
	StateUpdate
	AppendAncient
	GetRPCCalls
	PreProcessBlock
	PreProcessTransaction
	BlockProcessingError
	NewHead
	NewSideBlock
	Reorg

	Hook Writing Guide
	The Public Plugin Hook Function
	The Private Plugin Hook Function
	In-Line Invocation

	PluGeth-utils Subpackages
	Get in touch with us

